Product NEWS 2011

Bahr Modultechnik GmbH

Nord-Süd-Str. 10 a D-31711 Luhden Postfach 1127 D-31703 Bad Eilsen Telefon 0049 5722-9933-0 Telefax 0049 5722-9933-70

e-mail: Info@bahr-modultechnik.com

http://www.bahr-modultechnik.com

Positioning system ELZA 40, 80, 80S, 100 / ELDZA 60, 60S

Specifications

ELZA 40, 80, 80S, 100

ELDZA 60, 60S

We have been implementing comprehensive model improvement measures so that we are able to offer our products in the segment of toothed rack drives in a more cost-effective and application-oriented way.

New innovative guiding profiles ELDZA have been developed, which can be used effectively in combination with standardized toothed racks. Depending on the specific task (e. g. load, mounting position, service life or cost) it is possible to use different material combinations.

Function:

This unit consists of an aluminium square profile with integrated, hardened steel guide rods. The carriage, which has internal linear ball bearings that can be adjusted free of play, is driven by a rack and pinion. The pinion is equipped with maintenance-free ball bearings.

Fitting position: As required. Max. length without joints 6.000 mm.

Carriage mounting: By T-slots.

Unit mounting: By Tslots and holes in the bearing blocks, mounting sets.

Rack: C45,Steel 1.4305 or plastic (POM) possible. Repeatability: ± 0,2 mm.

Forces and torques	Size	ELZ	A 40	ELDZ	A 60	ELDZ/	4 60 S	ELZ	08 A	ELZA	80 S	ELZA	100	
	Forces/Torques	static	dynamic	static	dynamic	static	dynamic	static	dynamic	static	dynamic	static	dynamic	
	F _x (N)	900	750	1500 *	1200 *	1500 *	1200 *	2200	1800	2200	1800	2900	2500	
	F _v (N)	1200	700	3000	2000	4100	3100	3000	2000	4600	3600	8000	6500	
	F_(N)	900	650	1 <i>7</i> 00	1100	2160	1600	1700	1100	3000	1800	3600	2200	
Fz Mz	M _x (Nm)	25	20	67	43	88	65	90	55	170	140	300	230	
Mx Fin	M, (Nm)	32	18	90	70	190	140	110	80	270	230	400	270	
Fy My	M, (Nm)	35	25	120	100	230	1 <i>7</i> 0	150	120	300	220	<i>75</i> 0	500	
My	All forces and t	All forces and torques related to the following:												
	existing values	existing values $\frac{Fy}{Fy_{dyn}}$ + $\frac{Fz}{Fz_{dyn}}$ + $\frac{Mx}{Mx_{dyn}}$ + $\frac{My}{My_{dyn}}$ + $\frac{Mz}{Mz_{dyn}}$ ≤1												
	table values													
	Speed													
	(m/sec) max		2	2	,5	2	,5		3	;	3		3	
	Geometrical mo	ments	of inertic	of alu	minium	profile								
	l _x mm⁴	1,32	2x10 ⁵	4,86	0x105	4,86	x105	18,9	9x10 ⁵	18,9	9x10 ⁵	44,4	1×10 ⁵	
	l mm⁴	1,34	4x10 ⁵	4,87	7x10 ⁵	4,87	′x10⁵	18,9	7x10 ⁵	18,9	7x10 ⁵	44,8	8x105	
	E-Modulus N/mm²	70	000	700	000	700	000	70	000	700	000	70000		

* = Depending on materialcombinations (see page 3) Fx values could be different!

For life-time calculation of rollers use our CD-ROM or homepage!

Formula: ELZA/ELDZA

Driving torque:

 $M_a = \frac{F^*P^*S_i}{2000^*\pi} + M_{leer}$

 $P_{a} = \frac{M_{a} * n}{9550}$

 $\begin{array}{ll}
E &= \text{force} & \text{(N)} \\
E &= \text{pulley action perimeter} & \text{(mm)} \\
E &= \text{safety factor } 1, 2 \dots 2
\end{array}$

M_{leer} = no-load torque n = rpm pulley

driving torquemotor power

 $f = \frac{F^*L^3}{E^*I^*192}$

f= deflection (mm)
F= load (N)
L= free length (mm)
E= elastic modulus 70000 (N/mm²)
l= second moment of area (mm⁴)

(Nm)

(min-1)

(Nm) (KW)

Positioning system ELZA 40, 80, 80S, 100 / ELDZA 60, 60S

*For slide nuts refer to main catalog chapter 2.2 page 2

Drive version:

	теление по																							
Size	Basic length L	A	В	v	D	E	F	G	н	ı	J	к	KK für	м	MM for	Z	NN for	OO for	P	Ø	т	v	Basic weight	Weight per 100 mm
ELZA 40	150	100	21,5	58	37	18	32	60	56	-	35	6,5	-	47	-	100	M 6	M 6	12	122	M 6	-	2,0 kg	0,35 kg
ELDZA 60	205	144	28,0	82	47	30	42	75	63	-	49	8,5	M 6	69	-	130	M 8	M 8	16	168	M 6	-	4,7 kg	0,63 kg
ELDZA 60S	230	170	34,5	82	47	30	42	92	63	-	53	8,5	M 6	69	-	150	M 8	M 8	16	194	M 6	10	7,2 kg	0,63 kg
ELZA 80	240	170	39,0	102	68	40	60	105	100	30	70	8,5	-	88	M 6	170	M 10	M 10	20	194	M 8	10	11,9 kg	1,19 kg
ELZA 80S	260	190	39,0	102	68	40	60	105	100	30	<i>7</i> 1	8,5	-	88	M 6	170	M 10	M 8	20	214	M 8	12,5	12,9 kg	1,19 kg
ELZA 100	360	230	55,3	130	90	50	80	155	120	29	89	10,5	-	112	M 10	240	M 10	M 10	30	300	M 10	-	24,0 kg	1,75 kg

	J. J. I		J. J		
	i	-	2	;	3
Q	L	Q	L	Q	L
227	255	138	166	243	271
303	340	184	221	319	356
329	366	214	251	349	386
369	415	210	256	385	431
389	435	234	280	409	455
505	565	316	376	521	581
	227 303 329 369 389	Q L 227 255 303 340 329 366 369 415 389 435	Q L Q 227 255 138 303 340 184 329 366 214 369 415 210 389 435 234	Q L Q L 227 255 138 166 303 340 184 221 329 366 214 251 369 415 210 256 389 435 234 280	Q L Q L Q 227 255 138 166 243 303 340 184 221 319 329 366 214 251 349 369 415 210 256 385 389 435 234 280 409

Size	Shaft	Vari	Pin	ion
	ø h6 x length	Key	mm/rev.	Modul
40	14 × 30	5x5x28	188,5	1,5
60	18 x 30	6x6x28	251,3	2
60 S	18 x 30	6x6x28	314,2	2
80 (S)	28 x 40	8×7×35	358,0	3
100	28 x 40	8x7x35	508,9	3

Version 0/1

Rack/Pinion Version: (ONLY for ELDZA)

0	Version	0	1	2	3
	Material Rack/Pinion	Steel/Plastic (Standard)	Stainless steel/Plastic	Plastic/Steel	Plastic/Stainless steel

Basic length + stroke = total length 1500

> For combination kits and connecting elements refer to main catalog chapter 2.2

Sample ordering code:

ELDZA 60 with standard body profile, standard carriage, standard shaft, steelpinion, 1295 mm stroke

Version 2/3

Belt drive

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidess. The carriage is moved by a belt drive. An innovation is that the toothed belt is diverted within a drive block positioned centrically. The result is an enormous compactness with regard to the overall system length. The toothed drive pulley has a coupling claw in the standard version. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel. The openings of the guide body are sealed with 3 stainless steel cover bands to protect the guide from splash water and dust. Alternatively, the opening can also delivered without cover bands.

Fitting position: As required. Max. length 6.000 mm without joints.

Carriage mounting: By T-slots.

Unit mounting: By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

Belt type: HTD with steel reinforcement, no backlash when changing direction, repeatability \pm 0, 1 mm.

Carriage support: In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position.

For longer carriages the number of runner blocks can be increased.

Forces and torques

Size	120	16	60	200			
permitted dyn. Forces*		5000 km	10000 km	5000 km	10000 km		
F _x (N)		1900	1800				
F _Y (N)		5570	3900				
F_z (N)		7050	5020				
M_{x} (Nm)		358	255				
M _√ (Nm)		369	262				
M_z (Nm)		364	258				
C (N)		78	300		·		

All forces and torques related to the following:

 $\frac{Fy}{F_{V_{abo}}} + \frac{Fz}{Fz_{abo}} + \frac{Mx}{Mx_{abo}} + \frac{My}{My_{abo}} + \frac{Mz}{Mz_{abo}} \le 1$ existing values

lable values Fy _{dyn} FZ _{dyn} /VI	ix _{dyn} /viy _{dyn} /vi∠ _{dyn}	
No-load torque		
Nm without cover bands	1,5	
Nm with cover bands	2,1	
Speed		
(m/sec) max	5	
Tensile force		
permanent (N)	1900	
0,2 sec (N)	2090	
Geometrical moments of inertia of alun	ninium profile	
l _x mm⁴	21,32x10 ⁵	
l _v mm⁴	123,36x10⁵	
Elastic modulus N/mm²	70000	

* referred to life-time

Formula: DSZS

Driving torque:

 $M_a = \frac{F^*P^*S_i}{2000^*\pi} \quad + M_{leer} \quad \begin{array}{ll} F & = force \\ P & = pulley \ action \ perimeter \\ S_i & = safety \ factor \ 1,2 \dots 2 \\ M_{lee} & = no-load \ torque \end{array}$ (N) (mm)

(Nm)= rpm pulley (min-1)

 $M_a = driving torque$ (Nm)= motor power (KVV) Deflection:

f = deflection(mm) F = load(N)L = free length (mm)

E= elastic modulus 70000 I = second moment of area(mm⁴) Nominal lifetime:

 $L = \left(\frac{C}{F}\right)^3 \times 10^5$

= Lifetime in meter

C = Dynamic load factor = Middle load (N)

*For slide nuts refer to main catalog chapter 2.2 page 2

V = Q + 100 mm W = servicing position

			,	-			_								0 1								
Size	Basic length L	A	В	С	D	E	F	G	н	ı	J	к	M for	N for	O for	Р	Ø	т	U	х	Y	Basic weight	Weight per 100 mm
DSZS 120																							
DSZS 160	310	160	130	100	68	90	60	107	11	39	90	213	M 6	M 8	M 8	12	280	M 8	80	180	38	23,0 kg	1,9 kg
DSZS 200																							

Size	Ver	sion)	Version 1					
	Q	L	Ø	L				
120								
160	280	310	280	310				
200								

5 is as 0, but with coupling claws on both sides. The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings or tension sets (size 200).

Belt table

0

Co	o. Size		Belt	mm/rev.	Number of teeth			
0	4	120	5M25					
0	7	160	8M30	192	24			
0	9	200	8M50					

Shaft dimensions

Size	Shaft ø hó x length	Key		
120				
160	18 x 45	6x6x40		
200				

Basic length + stroke = total length

Inductive proximity switch sets, which can be mounted inside of the square profile, are available as accessories. Coupling and a special plug are mounted from the outside. For additional accessories refer to main catalog chapter 2.2-4.2.

Sample ordering code:

DSZS 160 1 0 0 0 0 7 1 01500

DSZS160 with internal profile and cover bands, standard carriage, coupling claw on one side, 1190 mm stroke.

Linear motor drive

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidance. The linear motor DSM unit is based on the principle of a linear, synchronous AC motor.

The guiding profile is fitted with permanent magnets as stator (secondary part). The carriage is fitted with the actuator (primary part). The magnetic attraction causes a force between carriage and guiding profile also in the absence of current. This force can be used for the initial tension of the bearings. Several carriages (primary parts) can be driven independently on one guiding profile. A special design of the carriage geometry results in the guiding profile being covered. This prevents small parts from falling into the system, so that clean-room applications are possible.

Fitting position: As required. Max. length 3.000 mm without joints.

Carriage mounting: By threaded holes.

Unit mounting: By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position. Carriage support:

For longer carriages the number of runner blocks can be increased.

Repeatability \pm 0,05mm mm. Repeated accuracy max. \pm 0,05mm up to 3.000 mm

external force by load

= magnetic attraction force

maximum force in conside-

ration of motor power

 $F_{z} + F_{a}$

Size		160			200			
Motor size	1	2	3	1	2	3		
permitted dyn.Forces*		10000 km		10000 km				
F _a (N)	1200	1800	5500	3600 5500 11000				
F _{zm} (N)	1590	2800	7030	4990	7640	13860		
$F_z(N)$	1 <i>775</i>	1 <i>775</i>	3550	4092	4092	8184		
M_{x} (Nm)	160	128	153	357	231	462		
$M_{v}(Nm)$	373	351	532	769	556	1540		
M_z (Nm)	222	261	328	585	654	906		
C (N)		7800		22800				
Number of runner blocks	4	4	8	4	4	8		

existing values

Motor specifications tx														
Motor size	1	2	3	1	2	3								
Carriage weight (kg)	4,8	5,3	<i>7</i> ,1	10,9	11,4	16,9								
Weight primary part (kg)	1,4	3,7	5,2	4,5	6,4	8,4								
permanent (N)	115	271	406	383	574	766								
Max. (N) 1sec.	323	607	911	868	1301	1735								

Moving force without current

N	30	30	60	40	40	80		
Geometrical moments of inertia	of alumir	nium profi	le					
$l_{\rm x}$ mm 4		2,13 x10 ⁶		4,81 ×10°				
l _v mm⁴		12,3 x10 ⁶		26,0 x10 ⁶				
Elastic modulus N/mm²		70000			70000			

* referred to life-time

Formula: DSM P

Nominal lifetime:

$$L = \left(\frac{C}{E}\right)^3 \times 10^5$$

C = Dynamic load faktor (N)F = Middle load

*For slide nuts refer to main catalog chapter 2.2 page 2

V = Q + 100 mm

W = servicing position

Size	Basic length L	A	В	С	E	F	G	н	J	к	M for	N for	O for	Р	U	Basic weight Motor size 1/2/3	Weight per 100 mm Motor size 1/2/3
DSM 160P	Q + 30	160	144	<i>7</i> 6	90	<i>7</i> 6	106	11	104	106	M 6	M 8	M 8	12	80	12,1/15/20	1,7/2,1/2,1
DSM 200P	Q + 35	200	182	76	140	96	126	15	126	129	M 8	M 10	M 10	15	100	26,1/29,6/36,8	2,8/2,8/2,8

Pos. 1 2 3 4 5 6 7

Sample ordering code:

DSM160P, Bahr Modultechnik Linear motor, standard body profile, Measurement system LE100/1 5V, Plug Pos. 1, motor size 1, 1154 mm stroke

Angle bracket profile 140

Function:

Various assemblies and axis types can be connected to the angle bracket profile. It can also be used to reinforce self-supporting positioning systems or to mount portals on profile frames.

	Code-No.	Α	В	С	D	E	F	G	Н	ı	J	K	L	M for	N	Р	Q	R	m [kg/m]	L max.
ſ	4200x	227	140	142	130	15	80	15	8,05	10	15	27	10	M 6	17	28	13	16	19,9	6000