Product NEWS 2011

Bahr Modultechnik GmbH Nord-Süd-Str. 10 a D-31711 Luhden
Postfach 1127
D-31703 Bad Eilsen
Telefon 0049 5722-9933-0
Telefax 0049 5722-9933-70

Positioning system ELZA 40, 80, 80S, 100 / ELDZA 60, $60 S$

Rack and pinion drive

ELZA 40, 80, 80S, 100

ELDZA 60, $60 S$
We have been implementing comprehensive model improvement measures so that we are able to offer our products in the segment of toothed rack drives in a more cost-effective and application-oriented way.

New innovative guiding profiles ELDZA have been developed, which can be used effectively in combination with standardized toothed racks. Depending on the specific task (e. g. load, mounting position, service life or cost) it is possible to use different material combinations.

Function:

This unit consists of an aluminium square profile with integrated, hardened steel guide rods. The carriage, which has internal linear ball bearings that can be adjusted free of play, is driven by a rack and pinion. The pinion is equipped with maintenance-free ball bearings.

Fitting position: As required. Max. length without joints 6.000 mm .
Carriage mounting: By T-slots.
Unit mounting: By T-slots and holes in the bearing blocks, mounting sets.
Rack:
C45,Steel 1.4305 or plastic (POM) possible. Repeatability: $\pm 0,2 \mathrm{~mm}$.

* = Depending on materialcombinations (see page 3) Fx values could be different! For life-time calculation of rollers use our CD-ROM or homepage!

Formula: ELZA/ELDZA

$$
\begin{aligned}
& \text { Driving torque: } \\
& M_{a}=\frac{F * P * S_{i}}{2000 * \pi}+M_{\text {leer }} \\
& P_{a}=\frac{M_{a}^{*} n}{9550}
\end{aligned}
$$

$f=\frac{F^{*} L^{3}}{E^{*} I^{*} 192}$

$f=$ deflection
(mm)

F= load
$L=$ free length
(N)
(mm)
$\mathrm{E}=$ elastic modulus $70000\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
I = second moment of area $\left(\mathrm{mm}^{4}\right)$

Positioning system ELZA 40，80，80S， 100 ／ELDZA 60， $60 S$

＊For slide nuts refer to main catalog chapter 2.2 page 2

Size \square	Basic length L	A	B	C	D	E	F	G	H	I	J	K	$\begin{aligned} & \text { KK } \\ & \text { für } \end{aligned}$	M	MM for	N	NN for	$\begin{aligned} & \text { OO } \\ & \text { for } \end{aligned}$	P	Q	T	V	Basic weight	$\begin{gathered} \text { Weight } \\ \text { per } \\ 100 \mathrm{~mm} \\ \hline \end{gathered}$
ELZA 40	150	100	21，5	58	37	18	32	60	56	－	35	6，5	－	47	－	100	M 6	M 6	12	122	M 6		2，0 kg	$0,35 \mathrm{~kg}$
ELDZA 60	205	144	28，0	82	47	30	42	75	63		49	8，5	M 6	69	－	130	M 8	M 8	16	168	M 6		$4,7 \mathrm{~kg}$	0，63 kg
ELDZA 60S	230	170	34，5	82	47	30	42	92	63		53	8，5	M 6	69	－	150	M 8	M 8	16	194	M 6	10	7，2 kg	0，63 kg
ELZA 80	240	170	39，0	102	68	40	60	105	100	30	70	8，5		88	M 6	170	M 10	M 10	20	194	M 8	10	11，9 kg	$1,19 \mathrm{~kg}$
ELZA 80S	260	190	39，0	102	68	40	60	105	100	30	71	8，5		88	M 6	170	M 10	M 8	20	214	M 8	12，5	$12,9 \mathrm{~kg}$	$1,19 \mathrm{~kg}$
ELZA 100	360	230	55，3	130	90	50	80	155	120	29	89	10，5	－	112	M 10	240	M 10	M 10	30	300	M 10	－	24，0 kg	1，75 kg

Choice of guide body profile：

0 （0）Standard（2）corrosion－protected guide rods and screws
（4）expanded corrosion－protected version（depending on the availability of components）

Choice of carriages：

（1）

Size	Version		Version		Version \mathbf{Q}	
	\mathbf{L}	\mathbf{Q}	\mathbf{L}	\mathbf{Q}	\mathbf{L}	
$\mathbf{4 0}$	227	255	138	166	243	271
$\mathbf{6 0}$	303	340	184	221	319	356
$\mathbf{6 0 S}$	329	366	214	251	349	386
$\mathbf{8 0}$	369	415	210	256	385	431
$\mathbf{8 0 S}$	389	435	234	280	409	455
$\mathbf{1 0 0}$	505	565	316	376	521	581

Drive version：

1	$\begin{gathered} 2 \\ \hline \square \end{gathered}$	3	4	5	6		Size \square	Shaft \varnothing h6 x length	Key	Pinion	
－			目	目	R					mm／rev．	Modul
目	目	\square	\square	\square			40	14×30	$5 \times 5 \times 28$	188，5	1，5
－		＝			\square		60	18×30	$6 \times 6 \times 28$	251，3	2
							60 S	18×30	$6 \times 6 \times 28$	314，2	2
				，	目	兂	80 （S）	28×40	$8 \times 7 \times 35$	358，0	3
						－	100	28×40	$8 \times 7 \times 35$	508，9	3

Rack／Pinion Version：（ONLY for ELDZA）

$\mathbf{0} \boldsymbol{V e r s i o n}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Material Rack／Pinion	Steel／Plastic（Standard）	Stainless steel／Plastic	Plastic／Steel	Plastic／Stainless steel

1500 Basic length + stroke $=$ total length

ELDZA	60	0	0	0	1	0	3	0	01500

For combination kits and connecting elements refer to main catalog chapter 2.2

Sample ordering code：
ELDZA 60 with standard body profile，standard carriage，standard shaft，steelpinion， 1295 mm stroke

Belt drive

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidess. The carriage is moved by a belt drive. An innovation is that the toothed belt is diverted within a drive block positioned centrically. The result is an enormous compactness with regard to the overall system length. The toothed drive pulley has a coupling claw in the standard version. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel. The openings of the guide body are sealed with 3 stainless steel cover bands to protect the guide from splash water and dust. Alternatively, the opening can also delivered without cover bands.

Fitting position: As required. Max. length 6.000 mm without joints.
Carriage mounting: By T-slots.
Unit mounting: By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.
Belt type: HTD with steel reinforcement, no backlash when changing direction, repeatability $\pm 0,1 \mathrm{~mm}$.
Carriage support: In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position.
For longer carriages the number of runner blocks can be increased.

* referred to life-time

Formula: DSZS

Driving torque:

$M_{a}=\frac{F * P * S_{i}}{2000 * \pi}+M_{\text {leer }}$	$F=$ force (N) P $=$ pulley action perimeter $S_{i}=$ safety factor $1,2 \ldots 2$	$(\mathrm{~mm})$
	$M_{\text {lee }}=$ no-load torque	(Nm)
$P_{a}=\frac{M_{a}{ }^{*} n}{9550}$	$M_{a}=$ rpm pulley	$\left(\mathrm{min}^{-1}\right)$
	$P_{a}=$ driving torque	(Nm)
		(KW)

Deflection:
$f=\frac{F * L^{3}}{E * 1 * 192}$

$f=$ deflection
$\mathrm{F}=$ load
$L=$ free length $\quad(\mathrm{mm})$
$E=$ elastic modulus 70000
I = second moment of area

Positioning system DSZS 120, 160, 200

*For slide nuts refer to main catalog chapter 2.2 page $2 \quad V=Q+100 \mathrm{~mm} \quad W=$ servicing position

Size \boldsymbol{a}	Basic length \mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{M} for	\mathbf{N} for	\mathbf{O} for	\mathbf{P}	\mathbf{Q}	\mathbf{T}	\mathbf{U}	\mathbf{X}	\mathbf{Y}	Basic $\mathbf{w e i g h t}$	Weight $\mathbf{p e r}$ $\mathbf{1 0 0} \mathbf{m m}$
DSZS 120																							
DSZS 160	310	160	130	100	68	90	60	107	11	39	90	213	$M 6$	$M 8$	$M 8$	12	280	$M 8$	80	180	38	$23,0 \mathrm{~kg}$	$1,9 \mathrm{~kg}$
DSZS 200																							

Choice of guide body profile:
0
(0)

Stainless versions upon request.

Choice of carriages:

0
(0)

internal profile
without cover bands

Drive version:

0

5 is as 0 , but with coupling claws on both sides.
The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings or tension sets (size 200).

Belt table

Code No.		Size	Belt	mm/rev.	Number of teeth
0	4	120	5M25		
0	7	160	8M30	192	24
0	9	200	8M50		

Shaft dimensions

Size	Shaft \varnothing h \times length	Key
$\mathbf{1 2 0}$		
$\mathbf{1 6 0}$	18×45	$6 \times 6 \times 40$
$\mathbf{2 0 0}$		

Sample ordering code
DSZS 160 with internal profile and cover bands, standard carriage, coupling claw on one side, 1190 mm stroke.

Linear motor drive

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidance. The linear motor DSM unit is based on the principle of a linear, synchronous AC motor.
The guiding profile is fitted with permanent magnets as stator (secondary part). The carriage is fitted with the actuator (primary part). The magnetic attraction causes a force between carriage and guiding profile also in the absence of current. This force can be used for the initial tension of the bearings. Several carriages (primary parts) can be driven independently on one guiding profile. A special design of the carriage geometry results in the guiding profile being covered. This prevents small parts from falling into the system, so that clean-room applications are possible.

Fitting position: As required. Max. length 3.000 mm without joints.
Carriage mounting: By threaded holes.
Unit mounting: By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.
Carriage support: In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position. For longer carriages the number of runner blocks can be increased.
Repeatability $\pm 0,05 \mathrm{~mm} \mathrm{~mm}$. Repeated accuracy max. $\pm 0,05 \mathrm{~mm}$ up to 3.000 mm

Forces and torques$\begin{aligned} \mathrm{F}_{\mathrm{z}} & =\text { external force by load } \\ \mathrm{F}_{\mathrm{a}} & =\text { magnetic attraction force } \\ \mathrm{F}_{\mathrm{zm}}= & \text { maximum force in conside- } \\ & \text { ration of motor power } \\ \mathrm{F}_{\mathrm{zm}}= & \mathrm{F}_{\mathrm{z}}+\mathrm{F}_{\mathrm{a}} \end{aligned}$	Size	160			200		
	Motor size	1	2	3	1	2	3
	permitted dyn.Forces*	10000 km			10000 km		
	$\mathrm{F}_{\mathrm{o}}(\mathrm{N})$	1200	1800	5500	3600	5500	11000
	$\mathrm{F}_{\text {zm }}(\mathrm{N})$	1590	2800	7030	4990	7640	13860
	$\mathrm{F}_{2}(\mathrm{~N})$	1775	1775	3550	4092	4092	8184
	$M_{\text {x }}(\mathrm{Nm})$	160	128	153	357	231	462
	M, (Nm)	373	351	532	769	556	1540
	$M_{z}(\mathrm{Nm})$	222	261	328	585	654	906
	$\mathrm{C}(\mathrm{N})$	7800			22800		
	Number of runner blocks	4	4	8	4	4	8
	All forces and torques related to the following:						
	existing values table values	$\frac{\mathrm{Fzm}_{\mathrm{Fzm}_{\text {dyn }}}}{+}$	$+\frac{M y}{M y_{\text {dyn }}}+\frac{M z}{M z_{\text {dyn }}}$	$+\frac{M z}{M z_{\text {dyn }}} \leq \mathbf{1 , 5}$			
	Motor specifications Fx						
	Motor size	1	2	3	1	2	3
	Carriage weight (kg)	4,8	5,3	7,1	10,9	11,4	16,9
	Weight primary part (kg)	1,4	3,7	5,2	4,5	6,4	8,4
	permanent (N)	115	271	406	383	574	766
	Max. (N) 1 sec.	323	607	911	868	1301	1735
	Moving force without current						
	N	30	30	60	40	40	80
	Geometrical moments of inertia of aluminium profile						
	$1 \times \mathrm{mm}^{4}$	$2,13 \times 10^{6}$			$4,81 \times 10^{6}$		
	$1 \mathrm{~mm}^{4}$	$12,3 \times 10^{6}$			$26,0 \times 10^{6}$		
	Elastic modulus $\mathrm{N} / \mathrm{mm}^{2}$	70000			70000		

Formula: DSM P

Deflection:

$f=$ deflection
$\mathrm{F}=$ load
(mm)
(N)
$L=$ free length
$\mathrm{E}=$ elastic modulus 70000
I = second moment of area
(mm)
$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ $\left(\mathrm{mm}^{4}\right)$

Nominal lifetime:
$L=\left(\frac{C}{F}\right)^{3} \times 10^{5}$
$\mathrm{C}=$ Dynamic load faktor (N)
$\mathrm{F}=$ Middle load (N)
C

Positioning system DSM 160P, 200P

ncreasing the carriage length will increase the basic length by the same amount.

*For slide nuts refer to main catalog chapter 2.2 page 2
$V=Q+100 \mathrm{~mm}$
$\mathrm{W}=$ servicing position

Size \square	Basic length \mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{M} for	\mathbf{N} for	\mathbf{O} $\mathbf{f o r}$	\mathbf{P}	\mathbf{U}	Basic weight Motor size $1 / 2 / 3$	Weight per 100 mm Motor size $1 / 2 / 3$
DSM 160P	$Q+30$	160	144	76	90	76	106	11	104	106	$M 6$	$M 8$	$M 8$	12	80	$12,1 / 15 / 20$	$1,7 / 2,1 / 2,1$
DSM $200 P$	$Q+35$	200	182	76	140	96	126	15	126	129	$M 8$	$M 10$	$M 10$	15	100	$26,1 / 29,6 / 36,8$	$2,8 / 2,8 / 2,8$

0 Choice of guide body profile:

without internal profile
and cover bands
(0)
(1)

without internal profile
without cover bands

Stainless version upon request.

1 Measurement system

(1) Measurement system LE 100/1 Resolution 0.05
(2) Measurement system LE 100/1 10,5-30V
(3) Hall senso
(4) Measurement system Resolution 0.05

1 Plug:

(1) Plug Pos. 1
(2) Plug Pos. 2
(3) open unconnected cable end

1 Motor size:

(1) Motor size 1 with Q_{1}
(2) Motor size 2 with Q_{2}
(3) Motor size 3 with Q_{3}
(4) Supply with Q^{*} *
(5) Supply with Q_{2} *

Dimensioning criteria for motor output						
	$\mathbf{I}_{\mathrm{p}} \square$	$\mathbf{b}_{\mathrm{p}} \square$	$\mathbf{h}_{\mathrm{ps}} \square$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
160	$\mathbf{Q}-70$	$\mathbf{7 1}$	50	316	360	461
200	$\mathbf{Q}-70$	85	$\mathbf{6 2}$	410	444	$\mathbf{6 1 0}$

$I_{p}=$ length primary part; $b_{p}=$ width primary part;
$h_{p s}=$ height primary part + height secondary part

+ interspaces primary-/secondary part

For standard carriage length see ' Q ' in table. The carriages can be delivered in any non-standard length upon request; the longer the carriage, the greater the load capacity. For digital controllers and linear encoder refer to main catalog chapter 9.1 page 10

Sample ordering code:
DSM160P, Bahr Modultechnik Linear motor, standard body profile, Measurement system LE 100/1 5V, Plug Pos. 1, motor size 1, 1154 mm stroke

Product News 2011/7

Angle bracket profile 140

Function:

Various assemblies and axis types can be connected to the angle bracket profile. It can also be used to reinforce self-supporting positioning systems or to mount portals on profile frames.

Code-No.	A	B	C	D	E	F	G	H	I	J	K	L	\boldsymbol{M} for	N	P	Q	R	m [kg/m]	$L_{\text {max }}$.
4200x	227	140	142	130	15	80	15	8,05	10	15	27	10	M 6	17	28	13	16	19,9	6000

